Archive

Posts Tagged ‘economics’

Moore’s law was a socially constructed project

January 30, 2022 No comments

Moore’s law was a socially constructed project that depended on the coordinated actions of many independent companies and groups of individuals to last for as long it did.

All products evolve, but what was it about Moore’s law that enabled microelectronics to evolve so much faster and for longer than most other products?

Moore’s observation, made in 1965 based on four data points, was that the number of components contained in a fabricated silicon device doubles every year. The paper didn’t make this claim in words, but a line fitted to four yearly data points (starting in 1962) suggested this behavior continuing into the mid-1970s. The introduction of IBM’s Personal Computer, in 1981 containing Intel’s 8088 processor, led to interested parties coming together to create a hugely profitable ecosystem that depended on the continuance of Moore’s law.

The plot below shows Moore’s four points (red) and fitted regression model (green line). In practice, since 1970, fitting a regression model (purple line) to the number of transistors in various microprocessors (blue/green, data from Wikipedia), finds that the number of transistors doubled every two years (code+data):

Transistors contained in a device over time, plus Moore's original four data-points.

In the early days, designing a device was mostly a manual operation; that is, the circuit design and logic design down to the transistor level were hand-drawn. This meant that creating a device containing twice as many transistors required twice as many engineers. At some point the doubling process either becomes uneconomic or it takes forever to get anything done because of the coordination effort.

The problem of needing an exponentially-growing number of engineers was solved by creating electronic design automation tools (EDA), starting in the 1980s, with successive generations of tools handling ever higher levels of abstraction, and human designers focusing on the upper levels.

The use of EDA provides a benefit to manufacturers (who can design differentiated products) and to customers (e.g., products containing more functionality).

If EDA had not solved the problem of exponential growth in engineers, Moore’s law would have maxed-out in the early 1980s, with around 150K transistors per device. However, this would not have stopped the ongoing shrinking of transistors; two economic factors independently incentivize the creation of ever smaller transistors.

When wafer fabrication technology improvements make it possible to double the number of transistors on a silicon wafer, then around twice as many devices can be produced (assuming unchanged number of transistors per device, and other technical details). The wafer fabrication cost is greater (second row in table below), but a lot less than twice as much, so the manufacturing cost per device is much lower (third row in table).

The doubling of transistors primarily provides a manufacturer benefit.

The following table gives estimates for various chip foundry economic factors, in dollars (taken from the report: AI Chips: What They Are and Why They Matter). Node, expressed in nanometers, used to directly correspond to the length of a particular feature created during the fabrication process; these days it does not correspond to the size of any specific feature and is essentially just a name applied to a particular generation of chips.

Node (nm)                       90      65     40     28      20    16/12     10       7       5
Foundry sale price per wafer  1,650   1,937  2,274  2,891   3,677   3,984   5,992   9,346  16,988
Foundry sale price per chip   2,433   1,428    713    453     399     331     274     233     238
Mass production year          2004    2006   2009   2011    2014    2015    2017    2018   2020
Quarter                        Q4      Q4     Q1     Q4      Q3      Q3      Q2      Q3     Q1
Capital investment per wafer  4,649   5,456  6,404  8,144  10,356  11,220  13,169  14,267  16,746
processed per year
Capital consumed per wafer      411     483    567    721     917     993   1,494   2,330   4,235
processed in 2020
Other costs and markup        1,293   1,454  1,707  2,171   2,760   2,990   4,498   7,016  12,753
per wafer

The second economic factor incentivizing the creation of smaller transistors is Dennard scaling, a rarely heard technical term named after the first author of a 1974 paper showing that transistor power consumption scaled with area (for very small transistors). Halving the area occupied by a transistor, halves the power consumed, at the same frequency.

The maximum clock-frequency of a microprocessor is limited by the amount of heat it can dissipate; the heat produced is proportional to the power consumed, which is approximately proportional to the clock-frequency. Instead of a device having smaller transistors consume less power, they could consume the same power at double the frequency.

Dennard scaling primarily provides a customer benefit.

Figuring out how to further shrink the size of transistors requires an investment in research, followed by designing/(building or purchasing) new equipment. Why would a company, who had invested in researching and building their current manufacturing capability, be willing to invest in making it obsolete?

The fear of losing market share is a commercial imperative experienced by all leading companies. In the microprocessor market, the first company to halve the size of a transistor would be able to produce twice as many microprocessors (at a lower cost) running twice as fast as the existing products. They could (and did) charge more for the latest, faster product, even though it cost them less than the previous version to manufacture.

Building cheaper, faster products is a means to an end; that end is receiving a decent return on the investment made. How large is the market for new microprocessors and how large an investment is required to build the next generation of products?

Rock’s law says that the cost of a chip fabrication plant doubles every four years (the per wafer price in the table above is increasing at a slower rate). Gambling hundreds of millions of dollars, later billions of dollars, on a next generation fabrication plant has always been a high risk/high reward investment.

The sales of microprocessors are dependent on the sale of computers that contain them, and people buy computers to enable them to use software. Microprocessor manufacturers thus have to both convince computer manufacturers to use their chip (without breaking antitrust laws) and convince software companies to create products that run on a particular processor.

The introduction of the IBM PC kick-started the personal computer market, with Wintel (the partnership between Microsoft and Intel) dominating software developer and end-user mindshare of the PC compatible market (in no small part due to the billions these two companies spent on advertising).

An effective technique for increasing the volume of microprocessors sold is to shorten the usable lifetime of the computer potential customers currently own. Customers buy computers to run software, and when new versions of software can only effectively be used in a computer containing more memory or on a new microprocessor which supports functionality not supported by earlier processors, then a new computer is needed. By obsoleting older products soon after newer products become available, companies are able to evolve an existing customer base to one where the new product is looked upon as the norm. Customers are force marched into the future.

The plot below shows sales volume, in gigabytes, of various sized DRAM chips over time. The simple story of exponential growth in sales volume (plus signs) hides the more complicated story of the rise and fall of succeeding generations of memory chips (code+data):

Sales volume, in gigabytes, of various sized DRAM chips over time.

The Red Queens had a simple task, keep buying the latest products. The activities of the companies supplying the specialist equipment needed to build a chip fabrication plant has to be coordinated, a role filled by the International Technology Roadmap for Semiconductors (ITRS). The annual ITRS reports contain detailed specifications of the expected performance of the subsystems involved in the fabrication process.

Moore’s law is now dead, in that transistor doubling now takes longer than two years. Would transistor doubling time have taken longer than two years, or slowed down earlier, if:

  • the ecosystem had not been dominated by two symbiotic companies, or did network effects make it inevitable that there would be two symbiotic companies,
  • the Internet had happened at a different time,
  • if software applications had quickly reached a good enough state,
  • if cloud computing had gone mainstream much earlier.

Many coding mistakes are not immediately detectable

December 20, 2020 1 comment

Earlier this week I was reading a paper discussing one aspect of the legal fallout around the UK Post-Office’s Horizon IT system, and was surprised to read the view that the Law Commission’s Evidence in Criminal Proceedings Hearsay and Related Topics were citing on the subject of computer evidence (page 204): “most computer error is either immediately detectable or results from error in the data entered into the machine”.

What? Do I need to waste any time explaining why this is nonsense? It’s obvious nonsense to anybody working in software development, but this view is being expressed in law related documents; what do lawyers know about software development.

Sometimes fallacies become accepted as fact, and a lot of effort is required to expunge them from cultural folklore. Regular readers of this blog will have seen some of my posts on long-standing fallacies in software engineering. It’s worth collecting together some primary evidence that most software mistakes are not immediately detectable.

A paper by Professor Tapper of Oxford University is cited as the source (yes, Oxford, home of mathematical orgasms in software engineering). Tapper’s job title is Reader in Law, and on page 248 he does say: “This seems quite extraordinarily lax, given that most computer error is either immediately detectable or results from error in the data entered into the machine.” So this is not a case of his words being misinterpreted or taken out of context.

Detecting many computer errors is resource intensive, both in elapsed time, manpower and compute time. The following general summary provides some of the evidence for this assertion.

Two events need to occur for a fault experience to occur when running software:

  • a mistake has been made when writing the source code. Mistakes include: a misunderstanding of what the behavior should be, using an algorithm that does not have the desired behavior, or a typo,
  • the program processes input values that interact with a coding mistake in a way that produces a fault experience.

That people can make different mistakes is general knowledge. It is my experience that people underestimate the variability of the range of values that are presented as inputs to a program.

A study by Nagel and Skrivan shows how variability of input values results in fault being experienced at different time, and that different people make different coding mistakes. The study had three experienced developers independently implement the same specification. Each of these three implementations was then tested, multiple times. The iteration sequence was: 1) run program until fault experienced, 2) fix fault, 3) if less than five faults experienced, goto step (1). This process was repeated 50 times, always starting with the original (uncorrected) implementation; the replications varied this, along with the number of inputs used.

How many input values needed to be processed, on average, before a particular fault is experienced? The plot below (code+data) shows the numbers of inputs processed, by one of the implementations, before individual faults were experienced, over 50 runs (sorted by number of inputs needed before the fault was experienced):

Number of inputs processed before particular fault experienced

The plot illustrates that some coding mistakes are more likely to produce a fault experience than others (because they are more likely to interact with input values in a way that generates a fault experience), and it also shows how the number of inputs values processed before a particular fault is experienced varies between coding mistakes.

Real-world evidence of the impact of user input on reported faults is provided by the Ultimate Debian Database, which provides information on the number of reported faults and the number of installs for 14,565 packages. The plot below shows how the number of reported faults increases with the number of times a package has been installed; one interpretation is that with more installs there is a wider variety of input values (increasing the likelihood of a fault experience), another is that with more installs there is a larger pool of people available to report a fault experience. Green line is a fitted power law, faultsReported=1.3*installs^{0.3}, blue line is a fitted loess model.

Number of inputs processed before particular fault experienced

The source containing a mistake may be executed without a fault being experienced; reasons for this include:

  • the input values don’t result in the incorrect code behaving differently from the correct code. For instance, given the made-up incorrect code if (x < 8) (i.e., 8 was typed rather than 7), the comparison only produces behavior that differs from the correct code when x has the value 7,
  • the input values result in the incorrect code behaving differently than the correct code, but the subsequent path through the code produces the intended external behavior.

Some of the studies that have investigated the program behavior after a mistake has deliberately been introduced include:

  • checking the later behavior of a program after modifying the value of a variable in various parts of the source; the results found that some parts of a program were more susceptible to behavioral modification (i.e., runtime behavior changed) than others (i.e., runtime behavior not change),
  • checking whether a program compiles and if its runtime behavior is unchanged after random changes to its source code (in this study, short programs written in 10 different languages were used),
  • 80% of radiation induced bit-flips have been found to have no externally detectable effect on program behavior.

What are the economic costs and benefits of finding and fixing coding mistakes before shipping vs. waiting to fix just those faults reported by customers?

Checking that a software system exhibits the intended behavior takes time and money, and the organization involved may not be receiving any benefit from its investment until the system starts being used.

In some applications the cost of a fault experience is very high (e.g., lowering the landing gear on a commercial aircraft), and it is cost-effective to make a large investment in gaining a high degree of confidence that the software behaves as expected.

In a changing commercial world software systems can become out of date, or superseded by new products. Given the lifetime of a typical system, it is often cost-effective to ship a system expected to contain many coding mistakes, provided the mistakes are unlikely to be executed by typical customer input in a way that produces a fault experience.

Beta testing provides selected customers with an early version of a new release. The benefit to the software vendor is targeted information about remaining coding mistakes that need to be fixed to reduce customer fault experiences, and the benefit to the customer is checking compatibility of their existing work practices with the new release (also, some people enjoy being able to brag about being a beta tester).

  • One study found that source containing a coding mistake was less likely to be changed due to fixing the mistake than changed for other reasons (that had the effect of causing the mistake to disappear),
  • Software systems don't live forever; systems are replaced or cease being used. The plot below shows the lifetime of 202 Google applications (half-life 2.9 years) and 95 Japanese mainframe applications from the 1990s (half-life 5 years; code+data).

    Number of software systems having a given lifetime, in days

Not only are most coding mistakes not immediately detectable, there may be sound economic reasons for not investing in detecting many of them.

Quality control in a zero cost of replication business

August 16, 2020 No comments

When a new manufacturing material becomes available, its use is often integrated with existing techniques, e.g., using scientific management techniques for software production.

Customers want reliable products, and companies that sell unreliable products don’t make money (and may even lose lots of money).

Quality assurance of manufactured products is a huge subject, and lots of techniques have been developed.

Needless to say, quality assurance techniques applied to the production of hardware are often touted (and sometimes applied) as the solution for improving the quality of software products (whatever quality is currently being defined as).

There is a fundamental difference between the production of hardware and software:

  • Hardware is designed, a prototype made and this prototype refined until it is ready to go into production. Hardware production involves duplicating an existing product. The purpose of quality control for hardware production is ensuring that the created copies are close enough to identical to the original that they can be profitably sold. Industrial design has to take into account the practicalities of mass production, e.g., can this device be made at a low enough cost.
  • Software involves the same design, prototype, refinement steps, in some form or another. However, the final product can be perfectly replicated at almost zero cost, e.g., downloadable file(s), burn a DVD, etc.

Software production is a once-off process, and applying techniques designed to ensure the consistency of a repetitive process don’t sound like a good idea. Software production is not at all like mass production (the build process comes closest to this form of production).

Sometimes people claim that software development does involve repetition, in that a tiny percentage of the possible source code constructs are used most of the time. The same is also true of human communications, in that a few words are used most of the time. Does the frequent use of a small number of words make speaking/writing a repetitive process in the way that manufacturing identical widgets is repetitive?

The virtually zero cost of replication (and distribution, via the internet, for many companies) does more than remove a major phase of the traditional manufacturing process. Zero cost of replication has a huge impact on the economics of quality control (assuming high quality is considered to be equivalent to high reliability, as measured by number of faults experienced by customers). In many markets it is commercially viable to ship software products that are believed to contain many mistakes, because the cost of fixing them is so very low; unlike the cost of hardware, which is non-trivial and involves shipping costs (if only for a replacement).

Zero defects is not an economically viable mantra for many software companies. When companies employ people to build the same set of items, day in day out, there is economic sense in having them meet together (e.g., quality circles) to discuss saving the company money, by reducing production defects.

Many software products have a short lifespan, source code has a brief and lonely existence, and many development projects are never shipped to paying customers.

In software development companies it makes economic sense for quality circles to discuss the minimum number of known problems they need to fix, before shipping a product.

Using Black-Scholes in software engineering gives a rough lower bound

March 28, 2019 No comments

In the financial world, a call option is a contract that gives the buyer the option (but not the obligation) to purchase an asset, at an agreed price, on an agreed date (from the other party to the contract).

If I think that the price of jelly beans is going to increase, and you disagree, then I might pay you a small amount of money for the right to buy a jar of jelly beans from you, in a month’s time, at today’s price. A month from now, if the price of Jelly beans has gone down, I buy a jar from whoever at the lower price, but if the price has gone up, you have to sell me a jar at the previously agreed price.

I’m in the money if the price of Jelly beans goes up, you are in the money if the price goes down (I paid you a premium for the right to purchase at what is known as the strike price).

Do you see any parallels with software development here?

Let’s say I have to rush to complete implementation some functionality by the end of the week. I might decide to forego complete testing, or following company coding practices, just to get the code out. At a later date I can decide to pay the time needed to correct my short-cuts; it is possible that the functionality is not used, so the rework is not needed.

This sounds like a call option (you might have thought of technical debt, which is, technically, the incorrect common usage term). I am both the buyer and seller of the contract. As the seller of the call option I received the premium of saved time, and the buyer pays a premium via the potential for things going wrong. Sometime later the seller might pay the price of sorting out the code.

A put option involves the right to sell (rather than buy).

In the financial world, speculators are interested in the optimal pricing of options, i.e., what should the premium, strike price and expiry date be for an asset having a given price volatility?

The Black-Scholes equation answers this question (and won its creators a Nobel prize).

Over the years, various people have noticed similarities between financial options thinking, and various software development activities. In fact people have noticed these similarities in a wide range of engineering activities, not just computing.

The term real options is used for options thinking outside of the financial world. The difference in terminology is important, because financial and engineering assets can have very different characteristics, e.g., financial assets are traded, while many engineering assets are sunk costs (such as drilling a hole in the ground).

I have been regularly encountering uses of the Black-Scholes equation, in my trawl through papers on the economics of software engineering (in some cases a whole PhD thesis). In most cases, the authors have clearly failed to appreciate that certain preconditions need to be met, before the Black-Scholes equation can be applied.

I now treat use of the Black-Scholes equation, in a software engineering paper, as reasonable cause for instant deletion of the pdf.

If you meet somebody talking about the use of Black-Scholes in software engineering, what questions should you ask them to find out whether they are just sprouting techno-babble?

  • American options are a better fit for software engineering problems; why are you using Black-Scholes? An American option allows the option to be exercised at any time up to the expiry date, while a European option can only be exercised on the expiry date. The Black-Scholes equation is a solution for European options (no optimal solution for American options is known). A sensible answer is that use of Black-Scholes provides a rough estimate of the lower bound of the asset value. If they don’t know the difference between American/European options, well…
  • Partially written source code is not a tradable asset; why are you using Black-Scholes? An assumption made in the derivation of the Black-Scholes equation is that the underlying assets are freely tradable, i.e., people can buy/sell them at will. Creating source code is a sunk cost, who would want to buy code that is not working? A sensible answer may be that use of Black-Scholes provides a rough estimate of the lower bound of the asset value (you can debate this point). If they don’t know about the tradable asset requirement, well…
  • How did you estimate the risk adjusted discount rate? Options involve balancing risks and getting values out of the Black-Scholes equation requires plugging in values for risk. Possible answers might include the terms replicating portfolio and marketed asset disclaimer (MAD). If they don’t know about risk adjusted discount rates, well…

If you want to learn more about real options: “Investment under uncertainty” by Dixit and Pindyck, is a great read if you understand differential equations, while “Real options” by Copeland and Antikarov contains plenty of hand holding (and you don’t need to know about differential equations).

Altruistic innovation and the study of software economics

March 14, 2019 2 comments

Recently, I have been reading rather a lot of papers that are ostensibly about the economics of markets where applications, licensed under an open source license, are readily available. I say ostensibly, because the authors have some very odd ideas about the activities of those involved in the production of open source.

Perhaps I am overly cynical, but I don’t think altruism is the primary motivation for developers writing open source. Yes, there is an altruistic component, but I would list enjoyment as the primary driver; developers enjoy solving problems that involve the production of software. On the commercial side, companies are involved with open source because of naked self-interest, e.g., commoditizing software that complements their products.

It may surprise you to learn that academic papers, written by economists, tend to be knee-deep in differential equations. As a physics/electronics undergraduate I got to spend lots of time studying various differential equations (each relating to some aspect of the workings of the Universe). Since graduating, I have rarely encountered them; that is, until I started reading economics papers (or at least trying to).

Using differential equations to model problems in economics sounds like a good idea, after all they have been used to do a really good job of modeling how the universe works. But the universe is governed by a few simple principles (or at least the bit we have access to is), and there is lots of experimental data about its behavior. Economic issues don’t appear to be governed by a few simple principles, and there is relatively little experimental data available.

Writing down a differential equation is easy, figuring out an analytic solution can be extremely difficult; the Navier-Stokes equations were written down 200-years ago, and we are still awaiting a general solution (solutions for a variety of special cases are known).

To keep their differential equations solvable, economists make lots of simplifying assumptions. Having obtained a solution to their equations, there is little or no evidence to compare it against. I cannot speak for economics in general, but those working on the economics of software are completely disconnected from reality.

What factors, other than altruism, do academic economists think are of major importance in open source? No, not constantly reinventing the wheel-barrow, but constantly innovating. Of course, everybody likes to think they are doing something new, but in practice it has probably been done before. Innovation is part of the business zeitgeist and academic economists are claiming to see it everywhere (and it does exist in their differential equations).

The economics of Linux vs. Microsoft Windows is a common comparison, i.e., open vs. close source; I have not seen any mention of other open source operating systems. How might an economic analysis of different open source operating systems be framed? How about: “An economic analysis of the relative enjoyment derived from writing an operating system, Linux vs BSD”? Or the joy of writing an editor, which must be lots of fun, given how many have text editors are available.

I have added the topics, altruism and innovation to my list of indicators of poor quality, used to judge whether its worth spending more than 10 seconds reading a paper.

Economics chapter added to “Empirical software engineering using R”

March 26, 2017 No comments

The Economics chapter of my Empirical software engineering book has been added to the draft pdf (download here).

This is a slim chapter, it might grow a bit, but I suspect not by a huge amount. Reasons include lots of interesting data being confidential and me not having spent a lot of time on this topic over the years (so my stash of accumulated data is tiny). Also, a significant chunk of the economics data I have is used to discuss issues in the Ecosystems and Projects chapters, perhaps some of this material will migrate back once these chapters are finalized.

You might argue that Economics is more important than Human cognitive characteristics and should have appeared before it (in chapter order). I would argue that hedonism by those involved in producing software is the important factor that pushes (financial) economics into second place (still waiting for data to argue my case in print).

Some of the cognitive characteristics data I have been waiting for arrived, and has been added to this chapter (some still to be added).

As always, if you know of any interesting software engineering data, please tell me.

I am after a front cover. A woodcut of alchemists concocting a potion appeals, perhaps with various software references discretely included, or astronomy related (the obvious candidate has already been used). The related modern stuff I have seen does not appeal. Suggestions welcome.

Ecosystems next.

Categories: Uncategorized Tags: , ,

Is the ISO C++ standard’s committee past its sell by date?

July 27, 2016 8 comments

The purpose of having a standard is economic. The classic (British) example is screw threads, having a standard set of screw threads means that products from different manufacturers are interchangeable and competition drives down prices; the US puts more emphasis on standards being an enabler of people interchangeability, i.e., train people once and they can use the acquired skills in multiple companies.

In the early days of computing we had umpteen compilers for Cobol, Fortran and then Pascal and then C and then C++. There were a lot of benefit to be had getting the vendors signed up to support a single standard for their language (of course they still added bells and whistles to ‘enhance’ their offerings). Language standard’s meeting were full of vendors, with a few end users (mostly from large corporations and government).

Fast forward to today and the ranks of compiler vendors has thinned significantly. Microfocus dominates Cobol, Fortran is dominated by a few number cruncher oriented companies, Pascal die hards cling on in surprising places, C vendors are till in double figures (down by an order of magnitude from its heyday) and C++ vendors will soon be accurately countable by Trolls (1, 2, 3, many).

What purpose does an ISO language standard serve in a world with only a few compilers? These days the standard is actually set by the huge volume of existing code that has to be handled by any vendor hoping to be adopted by developers.

The ISO C++ committee has become the playground of bored consultants looking for a creative outlet that work is not providing. Is there any red blooded developer who would not love spending a week, two or three times a year, holed up in a hotel with 100+ similarly minded people pouring over newly invented language features?

Does the world need all these new features in C++? Fortunately for the committee there are training companies who like nothing better than being able to offer ‘latest features of C++’ courses to all those developers who have been on previous ‘latest features of C++’ courses. Then there is the media, who just love writing about new stuff, there is even an ‘official’ C++ Standard news outlet.

In the good old days compiler vendors loved updates to the language standard because it gave them an opportunity to sell upgrades to customers; things are a bit different in the open source compiler market. What is the incentive of an open source compiler vendor to support features added by an ISO committee? In the past there has been a community expectation that it will happen, but is the ground swell of opinion enough to warrant spending resources on supporting new languages? Perhaps the GCC and LLVM folk will get together and mutually agree not to waste resources being the first mover.

Would developers at large notice if the C++ committee didn’t do anything for the next 10 years?

The Javascript ECMAscript standard also has a membership that includes many end users. In this case I suspect companies are sending people to make sure that new languages features don’t impact large code bases and existing investment in ways of doing things.

Update: I’m not saying that C++ language and libraries should stop evolving, but questioning the need to have an ISO Standard’s committee in a world of Open Source and a small number of compilers (that is likely to only become fewer).

Categories: Uncategorized Tags: , ,

Cost/performance analysis of 1944-1967 computers: Knight’s data

April 30, 2016 No comments

Changes In Computer Performance and Evolving Computer Performance 1963-1967, by Kenneth Knight, are the references to cite when discussing the performance of early computers. I suspect that very few people have read the two papers they are citing (citing without reading is a surprisingly common practice). Both papers were published in Datamation, a computer magazine whose technical contents could rival that of the ACM journals in the 1960s, but later becoming more of a trade magazine. Until the articles appeared on bitsavers.org they were only really available through national or major regional libraries.

Both papers contain lots of interesting performance and cost data on computers going back to the 1940s. However, I was not interested enough to type in all that data. This week I found high quality OCRed copies of the papers on the Internet Archive; my effort was reduced to fixing typos, which felt like less work.

So let’s try to reproduce Knight’s analysis of the data (code and data). Working in the mid-1960s I imagine Knight did everything manually, with the help of mechanical calculators. I have the advantage of fancy software, a very fast computer and techniques that were invented after Knight did his analysis (e.g., generalized linear methods).

Each paper contains its own dataset: the first contains performance+cost data on 225 computers available between 1944 and 1963, while the second contains this information on 63 computers available between 1963 and 1967.

The dataset lists the computer name, the date it was introduced, number of operations per second and the number of seconds that can be rented for a dollar (most computer time used to be rented, then 25 years later personal computers came along and people got to own one, now 25 years after that Cloud is causing a switch back to rental per second).

How are operations measured? The MIPS unit of measurement did not start to be generally used until the 1980s. Knight used 30 or so system characteristics, such as time to perform various arithmetic operations and I/O time, plus characteristics of scientific and commercial applications to calculate a value considered to be a representative scientific or commercial operation.

There is no mention of how seconds-per-dollar values were obtained. Did Knight ask customers or vendors? In a rental market I imagine vendor pricing could be very flexible.

In the 1970s people started talking about Moore’s law, but in the 1960s there was Grosch’s law: Computer performance increases as the square of the cost, i.e., faster computers were cheaper to rent, for a given number of operations. Knight set out to empirically check Grosch’s law, i.e., he was looking for a quadratic fit.

Fitting a regression model to the 1950-1961 data, Knight obtained an exponent of 2.18, while I obtained 2.38 for commercial operations (using a slightly more sophisticated model, because I could); time on faster computers was cheaper than Grosch claimed. For scientific operations Knight obtained 1.92, while I obtained 3.56; despite trying all sorts of jiggery-pokery I could not get a lower value. Unless Knight used very different values to the ones published in the ‘scientific’ columns, one of us has made a big mistake (please let me know if my code is wrong).

Fitting a regression model to the 1963-1967 data, I get figures (both around 2.85 and 2.94) that are roughly in agreement with Knight (2.5 and 3.1). Grosch’s law has broken down by 1963 (if it ever held for scientific operations).

The plot below shows operations per second against operations per dollar for the 1953-1961 data, with fitted lines for some specific years. It shows that while customers get fewer seconds per dollar on faster computers, the number of operations performed in those seconds is raised to the power of two+.

Operations per second vs. Seconds per dollar for computers 1953-1961

What other information can be extracted from the data? The 1953-1961 data shows seconds per dollar increased, over the whole performance range, by a factor of 1.15 per year, i.e., 15%, for both scientific and commercial; the 1963-1967 year on year increase jumps around a lot.

undefined behavior: pay up or shut up

August 31, 2014 2 comments

Academia recently discovered undefined behavior in C, twenty five years after industry tool vendors first started trying to help developers catch the problems it causes. Some of the tools that are now being written are doing stuff that we could only dream about back in the day.

The forces that morph occurrences of undefined behavior in source code to unwanted behavior during program execution have changed over the years.

  • When developers paid for their compilers there was an incentive for compiler writers to try to be nice to developers by doing the right thing for undefined behaviors. Twenty five years ago there were lots of commercial compilers all having slightly different views about what the right thing might be; a lot of code was regularly ported to different compilers and got to encounter different compiler writer’s views.
  • These days there is widespread use of open source compilers, which developers don’t pay for, removing the incentive for compilers writers to be nice to developers. Paying customers want support for new processors, enhancements to existing generated code quality and the sexy topic for PhDs is code optimization; what better climate for treating source containing undefined behavior as road kill. Now developers only need to upgrade to a later release of the compiler they are using to encounter an unexpected handling of undefined behavior.

A recent blog post, authored by some of the academics alluded to above, proposes adding a new option to gcc: -std=friendly-c. If developers feel that this kind of option needs to be supported then they should contribute to a crowdfunding campaign (none exists at the time of writing) to raise, say, $500,000 towards supporting the creation and ongoing support for the functionality behind this option. Of course one developer’s friendly is another developer’s unfriendly, so we could end up with multiple funds each promoting an option that supports a view of the world that is specific to one target environment.

At the moment, in response to user complaints, Open source compiler vendors lamely point out that the C standard permits them to handle source containing undefined behaviors the way they do; they stop short of telling people to quit complaining and that they are getting the compiler for free.

If this undefined behavior issue starts to gain substantial publicity, but insufficient funding, open source compiler vendors will need to start putting a positive spin on the decisions they make. Not being in marketing I might have a problem keeping a straight face when giving the following positive messages:

  • We are helping to save the world: optimized programs use less power (ok, every now and again they can use more). Do you really want to stop us adding more optimizations just because you cannot find the time to fix a mistake in your code?
  • We are helping your application gain market share. Applications that are not actively maintained are less and less likely to continue to work with every release of the compiler.

Socrates 2014 unconference in the UK

June 17, 2014 2 comments

I was at the Socrates unconference at the end of last week. An unconference is a conference with no prearranged speakers, the attendees turn up and some of them volunteer to talk about a topic of their choosing on the day. The talks were structured as half a dozen parallel sessions of an hour each in rooms dotted around two different buildings.

I had previously been to half a dozen or so of the London Software Craftsmanship meetups (there is a large overlap in the organizers of the two groups) and thought I had some understanding of how the community went about building software engineering knowledge. At the end of the first day this understanding underwent a major revamp (the arts and craft movement struck me as something of a parallel).

Based on the experience of one meeting I would say that the Socrates’ community approach to achieving the goals laid out in the Manifesto for Software Craftsmanship (as exemplified by those present at unconference) is primarily a social one based on personal experiences and shared experiences communicated through meetings and pair programming (yes, pair programming).

A great deal of pair programming was constantly going on and a person’s recent experience of pairing with somebody-or-other was a perfectly natural topic to bring up in casual conversation. I have never seen this kind of widespread community practice of interaction on a detailed before; I think it is great and I hope it spreads.

I volunteered to talk Friday morning about “When is it worth investing in reducing maintenance costs?” (I now have more data than used in my blog post on the topic). The talk did not go well in the sense that while people appeared to understood the analysis they did not seem to understand why anybody would want to use the decision making approach proposed. I got the same impression from people who asked me about the topic during food breaks (I had given a lightening talk Thursday evening with about half the attendees present).

The argument I made was that improving software is an investment intended to reduce future maintenance activities; like all investments the person making it wants receive a worthwhile return on the risk they are taking. The talk derived a requirement on the investment/benefit ratio needed for a code improvement activity to at least break even.

Now I am not always the world’s greatest communicator, so peoples’ lack of understanding may have been down to poor presentation on my part. But, in the evening, thinking about everything I had seen during the day I realised that my proposal for driving code improvement decisions using an economic model ran counter to the spirit of software craftsmanship as practiced by those present. This is not to say that the software craftsman are anti-economics, but that they want to be proud of their work and require that it meet certain personal and community standards, which may mean being less than economically efficient in some cases. At your average developer conference I would have expected zero interest, but here I had made the mistake of underestimating the strong craft influence and the socially derived approach (rather than trying to use experimental evidence) to finding solutions to software engineering problems.

There were a handful of people at the meeting interested in working towards a scientific approach to obtaining solutions to software engineering problems, i.e., using evidence derived from experiments. At one of the sessions a small group of us talked about how the software craftsman community might help researchers interested in experimental research (perhaps by helping to find professional subjects or by being willing to spend time discussing industry problems). I made my usual appeal for data that could be made public.

I suspect that many software craftsman would be interested in monitoring their own performance and that it would be worthwhile providing pointers to tools and techniques that might be used. Watch this space for progress.

The most interesting session I went to was by Steve Hayes who talked about his experience of starting and running a transparent company (this involves making information that companies usually keep confidential, such as employee, public). I had read about such companies before but this was my first encounter with somebody who had done it in practice.

The event appeared to run itself very smoothly, probably as much due to the invisible hard work of the organizers as much as the more visible attendee work. I would recommend the host venue, Farncombe conference centre, to anyone wanting to run a conference with lots of breakout rooms and social spaces. The food was high quality and artistically presented, demanding that both desserts on the menu be consumed.

Anybody who is in a rush to experience a Socrates unconference can visit Germany in August (a contingent from the UK are already booked).