Home > Uncategorized > Compiler validation is now part of history

Compiler validation is now part of history

Compiler validation makes sense in a world where there are many different hardware platforms, each with their own independent compilers (third parties often implemented compilers for popular platforms, competing against the hardware vendor). A large organization that spends hundreds of millions on a multitude of computer systems (e.g., the U.S. government) wants to keep prices down, which means the cost of porting its software to different platforms needs to be kept down (or at least suppliers need to think it will not cost too much to switch hardware).

A crucial requirement for source code portability is that different compilers be able to compile the same source, generating code that produces the same behavior. The same behavior requirement is an issue when the underlying word-size varies or has different alignment requirements (lots of code relies on data structures following particular patterns of behavior), but management on all sides always seems to think that being able to compile the source is enough. Compilers vendors often supported extensions to the language standard, and developers got to learn they were extensions when porting to a different compiler.

The U.S. government funded a conformance testing service, and paid for compiler validation suites to be written (source code for what were once the Cobol 85, Fortran 78 and
SQL validation suites). While it was in business, this conformance testing service was involved C compiler validation, but it did not have to fund any development because commercial test suites were available.

The 1990s was the mass-extinction decade for companies selling non-Intel hardware. The widespread use of Open source compilers, coupled with the disappearance of lots of different cpus (porting compilers to new vendor cpus was always a good money spinner, for the compiler writing cottage industry), meant that many compilers disappeared from the market.

These days, language portability issues have been essentially solved by a near mono-culture of compilers and cpus. It’s the libraries that are the primary cause of application portability problems. There is a test suite for POSIX and Linux has its own tests.

There are companies selling compiler C/C++ test suites (e.g., Perennial and PlumHall); when maintaining a compiler it’s cost effective to have a set of third-party tests designed to exercise all the language.

The OpenGroup offer to test your C compiler and issue a brand certificate if it passes the tests.

Source code portability requires compilers to have the same behavior and traditionally the generally accepted behavior has been defined by an ISO Standard or how one particular implementation behaved. In an Open source world behavior is defined by what needs to be done to run the majority of existing code. Does it matter if Open source compilers evolve in a direction that is different from the behavior specified in an ISO Standard? I think not, it makes no difference to the majority of developers; but be careful, saying this can quickly generate a major storm in a tiny teacup.

  1. No comments yet.
  1. No trackbacks yet.

A question to answer *