Home > Uncategorized > Learning a cpu’s instruction set

Learning a cpu’s instruction set

A few years ago I wrote about the possibility of secret instruction sets making a comeback and the minimum information needed to write a code generator. A paper from the sporadic (i.e., they don’t release umpteen slices of the same overall paper), but always interesting, group at Stanford describes a tool that goes a long way to solving the secret instruction set problem; stratified synthesis learns an instruction set, starting from a small set of known instructions.

After feeding in 51 base instructions and 11 templates, 1,795.42 instruction ‘formulas’ were learned (119.42 were 8-bit constant instructions, every variant counted as 1/256 of an instruction); out of a maximum of 3,683 possible instructions (depending on how you count instructions).

As well as discovering ‘new’ instructions, they also discovered bugs in the Intel 64 and IA-32 Architectures Software Developer Manuals. In my compiler writing days, bugs in cpu documentation were a pet hate (they cause huge amounts of time to be wasted).

The initial starting information used is rather large, from the perspective of understanding the instruction set of an unknown cpu. I’m sure others will be working to reduce the necessary startup information needed to obtain useful results. The Intel Management Engine is an obvious candidate for investigation.

Vendors sometimes add support for instructions without publicizing them and sometimes certain bit patterns happen to do something sensible in a particular version of a design because some random pattern of bits happens to do whatever it does without being treated as an illegal opcode. You journey down the rabbit hole starts here.

On a related note, I continue to be amazed that widely used disassemblers fail to correctly handle surprisingly many, documented, x86 opcodes; benchmarks from 2010 and 2016

  1. No comments yet.
  1. No trackbacks yet.

A question to answer *