Home > Uncategorized > Finding the gold nugget papers in software engineering research

Finding the gold nugget papers in software engineering research

Academic research projects are like startups in that most fail to make any return on their investment (e.g., the tax payer does not get any money back) and a few pay for themselves and all the failures. Irrespective of whether a project succeeds or fails, those involved will publish papers on the work, give talks at conferences and workshops and general try to convince anyone who will listen that the project was a great success.

Number or papers published plays an important role in evaluating the quality of a university department and the performance on an individual researcher. As you can imagine, this publish or perish culture leads to huge amounts of clueless nonsense ending up in print. Don’t be fooled by the ‘peer reviewed’ label, most of this gets done by the least experienced people (e.g., postgrad students) as a means of gaining social recognition in their specific research community, i.e., those doing the reviewing don’t always know much.

The huge number of papers describing failed projects and/or containing clueless nonsense is a major obstacle for anyone wanting to locate useful new knowledge.

While writing my C book I refined the following approach to finding high quality papers and created filtering rules for the subjects it covered. The rules below are being applied to papers relating to my Empirical Software Engineering book. I don’t claim any usefulness for these rules outside of academic software engineering research.

I use a scatter gun approach to obtain a basic collection of papers followed by ruthless filtering.

The scatter gun approach might start with one or two papers; following links on Google Scholar or even just Google search results filtered on “filetype:pdf”, in the past I have used CiteSeer which Google now does a better job of indexing, and Semantic Scholar is now starting to be quite good.

After 30 minutes or so I have 50 pdfs (I download maybe 4,000 a year). Now I need to quickly filter the nonsense to end up with maybe 10 that I will spend 5 minutes each reading, leaving maybe 2 or 3 for detailed reading (often not the original ones I started with).

When dealing with this kind of volume you have to be ruthless.

Spend just 10 seconds on the first pass. If a paper has some merits, let it remain for the next pass. Scan the paper looking for major indicators of clueless nonsense; these are not hard to spot, don’t linger, hit the delete (if data is involved, it is worth quickly checking the footnotes for a url to a dataset, which may be new and worth collecting):

  • it relies on machine learning,
  • it relies on information theory,
  • it relies on Halstead’s metric,
  • it investigates software quality. This is a marketing term used to give a patina of relevance to the worthless metric that is likely used in the research. Be on the lookout for other high relevance terms being used to provide a positive association with a worthless metric, e.g., developer productivity defined as volume of code written
  • it involves fault prediction. Academic folk psychology includes a belief that some project files contain more faults than other files, because more faults are reported in some files than others (or even that entire projects are more reliable because fewer faults have been reported). This is a case of the drunk searching under a streetlight for lost keys because that is where the ground can be seen. Faults are found by executing code, more execution means more faults. I only know of two papers that are exceptions to this rule (one of them is discussed here),
  • the primary claim in the conclusion is to have done something novel. Research requires doing new stuff, novel is a key attribute that is rather pointless for its own sake. Typing code using your nose would be novel, but would you want to spend more than 10 seconds reading a paper on the subject (and this example is at the more sensible end of the spectrum of novel research I have read about).

The first pass removes around 70-80% of the papers, at least for me.

For the second pass I will spend a minute or so doing a slightly slower scan. This often cuts the papers remaining in half.

By now, I have been collecting and filtering for over 90 minutes; time to do something else, perhaps not returning for many hours.

The third pass involves trying to read the paper. The question is: Am I having trouble reading this paper because the author has managed to compress a lot of useful information into a publication page limit, or is the paper so bad I cannot see the wood for the dead trees?

Answering this question takes practice and some knowledge of the subject area. You will speed up with practice and learning about the subject.

Some things that might be thought worth paying attention to, but should be ignored:

  • don’t bother looking at the names of the authors or which university they work at (who wrote the paper almost always provides no clues to its quality; there are very few exceptions to this and you will learn who they are over time),
  • ignore the journal or conference that published the paper (gold nuggets appear everywhere and high impact venues only restrict the clueless nonsense to the current trendy topics and papers citing the ‘right’ people),
  • ignore year of publication, quality is ageless (and sometimes fades from view because research fashions change).

If you have your own tips for finding the gold nuggets in software engineering, please let me know.

  1. No comments yet.
  1. No trackbacks yet.

A question to answer *