Home > Uncategorized > Estimating the quality of a compiler implemented in mathematics

Estimating the quality of a compiler implemented in mathematics

How can you tell if a language implementation done using mathematical methods lives up to the claims being made about it, without doing lots of work? Answers to the following questions should give you a good idea of the quality of the implementation, from a language specification perspective, at least for C.

  • How long did it take you to write it? I have yet to see any full implementation of a major language done in less than a man year; just understanding and handling the semantics, plus writing the test cases will take this long. I would expect an answer of at least several man years
  • Which professional validation suites have you tested the implementation against? Many man years of work have gone into the Perennial and PlumHall C validation suites and correctly processing either of them is a non-trivial task. The gcc test suite is too light-weight to count. The C Model Implementation passed both
  • How many faults have you found in the C Standard that have been accepted by WG14 (DRs for C90 and C99)? Everybody I know who has created a full implementation of a C front end based on the text of the C Standard has found faults in the existing wording. Creating a high quality formal definition requires great attention to detail and it is to be expected that some ambiguities/inconsistencies will be found in the Standard. C Model Implementation project discoveries include these and these.
  • How many ‘rules’ does the implementation contain? For the C Model Implementation (originally written in Pascal and then translated to C) every if-statement it contained was cross referenced to either a requirement in the C90 standard or to an internal documentation reference; there were 1,327 references to the Environment and Language clauses (200 of which were in the preprocessor and 187 involved syntax). My C99 book lists 2,043 sentences in the equivalent clauses, consistent with a 70% increase in page count over C90. The page count for C1X is around 10% greater than C99. So for a formal definition of C99 or C1X we are looking for at around 2,000 language specific ‘rules’ plus others associated with internal housekeeping functions.
  • What percentage of the implementation is executed by test cases? How do you know code/mathematics works if it has not been tested? The front end of the C Model Implementation contains 6,900 basic blocks of which 87 are not executed by any test case (98.7% coverage); most of the unexecuted basic blocks require unusual error conditions to occur, e.g., disc full, and we eventually gave up trying to figure out whether a small number of them were dead code or just needed the right form of input (these days genetic programming could be used to help out and also to improve the quality of coverage to something like say MC/DC, but developing on a PC with a 16M hard disc does limit what can be done {the later arrival of a Sun 4 with 32M of RAM was mind blowing}).

Other suggested questions or numbers applicable to other languages most welcome. Some forms of language definition do not include a written specification, which makes any measurement of implementation conformance problematic.

  1. No comments yet.
  1. July 16th, 2011 at 06:08 | #1